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Statistical Techniques in Modeling of
Complex Systems: Single and
Multiresponse Models

S. SITHARAMA IYENGAR anxD MUSTI S. RAO

Abstract— An exposition of statistical techniques in modeling complex
systems (single and multiresponse models) that are representative of recent
work on modeling systems is provided. The paper begins with several basic
concepts related to linear and nonlinear models. We then examine four
representative techniques of model discrimination which deal with use of
nonintrinsic and intrinsic parameters, use of Bayesian methods, and likeli-
hood discrimination. Next we examine multiresponse models with issues
dealing with design of experiments for parameter estimation and model
discrimination. A case study on sequential model discrimination in multire-
sponse models is also discussed. Finally an overview on estimating para-
meters in models of dynamical system is briefly discussed. The paper
concludes with a summary of unresolved issues, and with suggestions on
the future role of modeling in the complex situation.

I. INTRODUCTION

N RECENT YEARS the importance of modeling of

systems has attracted a considerable deal of interest
from researchers with various interests. For example auto-
matic control theory, biology, economics, and medicine are
samples of fields where model building and analysis plays
a central role. The basic aim of the study of a chemical,
physical, or biological system is to investigate how it be-
haves so as to make recommendations for its future devel-
opment. The most common means of doing this is to build
a mathematical model for the system through which it
becomes possible to predict, control, and optimize.

The modeling of any phenomenon is quite an involved
task. It generally consists of assuming certain plausible
models (which may be linear, nonlinear, or mechanistic),
estimating the parameters of these models in the light of
some experimental data, discriminating among the rival
models, and ultimately checking the adequacy of the pro-
posed model. The state of the art has been greatly ad-
vanced in the last decade, and is mainly due to the use of
large digital computing facilities coupled with the advance
of the state of mathematical system theory and statistical
techniques. This paper provides an exposition of statistical
techniques in modeling complex systems that are repre-
sentative of recent work on modeling systems. The re-
mainder of the paper is organized as follows.
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The general modeling strategy is considered in Section 1.
The problem of estimation of parameters in linear and
nonlinear single response models is considered in Section
II and I11, respectively. Various model discrimination tech-
niques for single-response models are discussed in Section
IV. Once the most plausible model has been obtained from
a set of competing models, it is necessary to validate the
proposed model. Lack-of-fit F tests and residual analysis
are used for this purpose. These tests of model adequacy
are discussed in Section V. When discrimination cannot be

" achieved from the existing data, it becomes necessary for

the experimenter to design further experiments that pro-
vide sharp discrimination. In order to achieve this goal
using minimum amount of experimental effort, these ex-
periments are conducted sequentially. The design strategy
for model discrimination of single-response models is pre-
sented in Section VI. Once the final model has been
obtained the goal of the experimenter is to obtain precise
estimates of these parameters that will minimize their joint
confidence region. The design strategy for the precise
estimation of parameters in single-response models is pre-
sented in Section VII.

The analogous techniques of parameter estimation, model
discrimination, and designs of experiments for multire-
sponse models are discussed in Sections VIII, IX, X, and
X1, respectively. The paper concludes with a case study on
sequential model discrimination in multiresponse systems
in Section XII. Finally a very brief overview on dynamical
systems is presented.

A. Mechanisms and Models

For any system it may be assumed that there exists a
precise mathematical and physical representation of all
phenomena that make up the system. In many situations,
however, a priori it may not be known what this model is,
and in fact the first goal of the experimenter is to obtain
this relationship which is normally referred to as the model.

For example the biological oxygen demand (BOD), which
is used a measure of the pollution produced by domestic
and industrial wastes, may be given by an exponential
model of the form [1]

n=20,(1—exp— 6,), (1)

where 7 is the BOD and ¢ is the incubation period.

0018-9472 /83 /0300-0175801.00 ©1983 IEEE



D e N —

T T R A1 5 50 A A bt <t
=

176 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. SMC-13, NO. 3, MARCH/APRIL 1983

Modelling

}

Empirical

v

Mechanistic

Modelling

Design Experi ments

For Model Discrimi-

Modelling
Mode! Parameter ,
Discrimination e —P Estimation i
natien/ Parameter ‘
Estimation. !

Fig.. 1.

Another example of a model is the expression for the
rate of a chemical reaction between two species 4 and B,
which may be represented by

r,= —dC,/dt = kC™C}, (2)

where r, is the rate of consumption of the species 4, k is
the rate constant of the reaction, C, and C, are the
concentrations of the species 4 and B, ¢ is time, and m and
n are the reaction orders.

Equation (2) is a power-law model in which the reaction
rate r, is the dependent variable and the concentrations C.
and C, are the controllable quantities. However, in general,
all phenomena can be theoretically represented by a
mathematical model of the form

w=f(0,§), (3)

where 7 is the expected value of the dependent variable », 0
is a (pxl) vector of parameters, and ¢ is a (px1) vector of
independent variables.

It is frequently possible to postulate several physically
meaningful models which can describe the same system.
The investigator is then faced with the dual problem of
choosing the best among the rival models and obtaining
the best estimates (in some statistical sense) of the parame-
ters involved in the selected model [2], [3]. The first stage,
in which the precise mathematical relationship applicable
to the system is identified, is known as the specification
stage, and the second one, in which precise estimates of the
parameters are obtained, is known as the estimation stage.

Both these stages constitute the important goals of model-
ing.

B. Modeling Strategy

In some cases, when an experimenter starts with an
object of modeling either the whole system or a part of it,
he may have some knowledge about the possible mecha-
nism. In others he may not know anything about the
system. In most practical cases, normally he may have a
partial knowledge about the system. If he does not have
any knowledge about the system he may resort to purely
empirical modeling, while if he has complete information
about the system he may directly proceed with the estima-
tion stage. In most cases, however, he may be in between
these two broad aspects which leads to the so-called mech-
anistic modeling. The modeling strategy is summarized in
Fig. 1 [1]. The various modeling strategies are further
discussed below.

1) Empirical Models: Though one would like to find the
“real world” applicable to a physical situation, invariably
it may be an elusive goal. Under these conditions, one is
left with two choices—viz., empirical modeling and mecha-
nistic modeling. These empirical models may be polynomi-
als in the independent variables. A typical empirical model
may be represented by [4]

Vi=0,+ 0., + 0,6, +--- + 0pgpi * 0“5%:' Ol -
+0.6 ¢, 18
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where € is the error associated with a measurement, 8 and ¢
refer to the corresponding parameters and independent
variables, respectively, and the subscript i refers to the ith
measurement. Empirical models are arbitrarily chosen
based on the apparent functional relationship of the re-
sponse to the independent variables.

Generally, either polynomials of the type given by (4) or
power-law models given by (2) are used to represent em-
pirical models. These have no relation whatsoever, to the
true mechanism of the system under consideration.
Whenever the phenomenon under consideration is very
complex, empirical models give useful guidance predicting
the response within the range of experimentation.

2) Mechanistic Models: A mechanistic model is a
mathematical relationship between the response (depen-
dent variable) and the independent variables derived from
a consideration of a plausible mechanism. For example
consider a simple heterogeneously catalyzed surface reac-
tion.

(5)

where A4.s, B.s, and C.s represent the adsorbed species .1,
B, and C, respectively, and s denotes a vacant site. If
surface reaction is rate controlling, the model may be
represented by

A.s+ B.s > C.s + s,

AP
y= : (6)
(1+6,¢ + 0352)2

where y is the rate of reaction (dependent variable) and £,
and £, are the gas-phase concentrations of the species A
and B, respectively.

Mechanistic modeling should be used judiciously. It is
justified when the state of art is sufficiently advanced to
formulate a useful mechanistic model. Judgment is needed
in deciding when and when not to use mechanistic models
[1]. Two important aspects of mechanistic modeling consist
of parameter estimation and model discrimination. Con-
sider a set of observations y and the corresponding values
of an independent variable § available on a particular
system. The experimental observations of a hypothetical
situation are shown on the y versus £ plot in Fig. 2. Also
shown on the graph are two different models arising out of
different mechanistic considerations. From the graph it is
evident that either Model 1 or 2 describes the system under
consideration. It is seen from the graph that as long as the
experimental data are obtained in the region 0 < ¢ < §,, it
is difficult to say which of the two models governs the
system. If the goal were to discriminate among these two
models, the observations should be taken at higher values
of the independent variable §. Thus the “design of experi-
ments” plays a dominant role in the model of discrimina-
tion problem and its importance has been recognized for a
long time [3]-[14]. Parameter estimation, model discrimina-
tion, and design of experiments for either model dis-
crimination or parameter estimation constitute the
important components of modeling. These topics are
reviewed in the following sections.
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II. ESTIMATION OF PARAMETERS IN LINEAR MODELS

A. Definitions

A model can be either linear or nonlinear. If the partial
derivative of the response function with respect to any
parameter does not contain the parameters it is known as a
linear model. For example the model

y=0&" + 0,8 + ¢ (7)

is a linear model in the parameters 6,, 6,. The constraints
m < 2 and n < 2 must be recognized for linearity of the
model described in (7). On the other hand the model of the
following form is a nonlinear model.

y =0,exp(—0,£,§,) +e. (®)

The technique to be employed for the estimation of
parameters in any model depends on the nature of the
model and it error structure. The parameter. estimation

techniques are reviewed briefly in the following sections.
For details of the methods see [1]-[3], [15]-[17].

B. Linear Regression

1) Estimation of Parameters: It is assumed that there are

n measurements y, made on a system where the true value

of the quantity which is measured by y, is called 7;,, and
may be perfectly represented by

=0k 0+ + 0p£ (%)

The quantities £, i =1,---,n and j = 1,2,---, p are as-
sumed to be known perfectly. From (9) it follows that

V=08, + 0+ -+ 0L+,

ip» p<n

(10)

where £, is the value of the jth independent variable

i=1,2,,n,
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corresponding to the ith measurement. As a further as-
sumption it is assumed that the errors are uniformly and
independently distributed. Thus the covariance matrix of
the errors may be given by

V(() =1(n><n)oz’ (ll)

where / is an (n X n) identity matrix and o? is the un-
known variance. .
The least-squares estimates of the parameters (§) are
those values of the parameters which minimize the sum of
squares of the differences between the observations and the
predictions. These estimators of the parameters, also known
as BLUE (best linear unbiased estimators), can be given by

0=(§8)""(+y), (12)
where £ is given by
TR SR O A
S e £as
heoh SRR (13)
& TR TR 5,,,,J
and
el 0 RS N 4 (14)

2) Confidence Intervals and Confidence Regions: For a
linear model of the type given by (10), the (1 — a/2) 100
percent confidence interval for the estimate of 8, is given by

(11, 2], [15]
0, + ’v.a/Z[U(ai)]l/zy

where 1, , , is the (1 — a/2) 100 percent point of the ¢
distribution with v degrees of freedom.

If the errors in the response are assumed to be normally
and independently distributed with constant variance a2,
the quantity v(6,) is the ith diagonal element of the matrix
(£6)7 ' If the parameter estimates are correlated, then
the joint (1 — «) 100 percent confidence region is given by

(11, [2], (15]
(8 -8)§4(8 - 6) = s*pF,(p, v), (15)

where § is a vector of parameter values which is being
estimated with linear regression theory by _9, s% is an
unbiased independent estimate of experimental error vari-
able 0?2, p 1is the number of parameters, and F,( p, v) is the
critical value of F at a significance level of a.

III. ESTIMATION OF PARAMETERS— NONLINEAR
MODELS

Invariably, in many practical situations one encounters
nonlinear models. For example, for the gaseous dehydra-
tion of ethanol on a resin catalyst, Kabel and Johanson
[18] gave the rate expression as

kK,(P2 - P,P,/K,) G
r = .
(Lt K P +K.P +KP)

In this expression r is the measured (dependent) variable,
P,. P,, and P, are the controllable quantities (independent
variables), and k, K, K,, K,,, and K., are the parameters
to be estimated.

For scientific reasons the parameters in this nonlinear
model should be estimated using nonlinear regression. In
estimating the parameters in a linear model, one sets the
partial derivatives of the residual sum of squares (RSS)
with respect to each parameter to zero, and solves the
resulting equations simultaneously. However in the case of
nonlinear models, such equations cannot be easily solved.
An iterative solution has been suggested [15], [19] for
estimating the parameters in a nonlinear model. The proce-
dure consists of first expanding the model by a Taylor’s
series expansion, retaining the linear terms, and then soly-
ing for the parameters by linear regression analysis. By
retaining the linear terms in the Taylor’s series expansion,
the model may be structured as follows:

B , 8
Ny = ) 239 Z f(gg —)
i 9

i=1

(9:‘ i 0i0)~ (17)

Including experimental error (17) may be written as

™ p
zu= Zf’iu8i+€u7 . (18)
i=1
where
zu=yu—f(§u’_0)la-00+f (19)
af(¢,.9)
W o
and
5 =6, — g0, @1)

Since (18) is linear, the correction vector 8, can be obtained
by fundamentally minimizing §( 0).

The improved parameter estimates for the next trial are
given by'

60 =60+ s,. (22)

This procedure is iterated until the corrections d; become
exceedingly small.

One can also apply the steepest descent procedures to
determine parameter values [3]. This consists of setting up
a first-order design in the parameter space about a set of
parameter estimates, calculating the direction of steepest
descent, obtaining the minimum, and using a second-order
design for the precise location of the minimum. This ap-
proach has been found to converge for nearly any set of
initial parameter estimates, but its convergence can be
agonizingly slow. Marquardt [20] has suggested a com-
promise between these two primary methods which finds
extensive application in estimating parameters in a nonlin-
ear model.

'"The Taylor series converges when the model solutions are sufficiently
close to the true solution.
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It is very important to note that a proper choice of the
initial parameter estimates is important in the estimation
procedure. Intrinsically nonlinear models may be linearized
to obtain initial estimates of the parameters. In some
situations one might have prior knowledge of the probable
values of the parameters which may be used as initial
estimates. Sequential simplex method has been successfully
used for estimating the parameters in nonlinear models.
This method is opportunistic and it converges even when
the initial simplex straddles two or more ridges [21]-[23].

A derivative-free algorithm (DUD) has been developed
by Ralston and Jennrich for fitting models defined by
systems of nonlinear differential equations. On a number
of test problems, DUD has been claimed to compete
favorably with even the best derivative-based algorithms
[24].

IV. MODEL DISCRIMINATION—SINGLE RESPONSE
MODELS

The problem of discriminating among a set of competing
models is that of choosing the one, hopefully unique, that
gives predictions which in some sense are better than those
given by the others. Model discrimination is achieved by

1) use of nonintrinsic parameters, which are parameters
introduced into a model for the purpose of dis-
crimination from a set of rival models;

2) use of intrinsic parameters, i.e., parameters which are
inherently present in the model;

3) use of Bayesian methods; and

4) use of non-Bayesian methods.

Several reviews [2], [4], [17], [25] have appeared on the
model-discrimination aspect, the salient features of which
are discussed briefly in the following sections.

A. Use of Nonintrinsic Parameters

Consider the discrimination between two rival Models 1
and 2 given by

m =f(8.%) (23)

and
= g(f,_&)

The discrimination between these two models (described
by (23)) can be achieved by considering an equation of the

type

)’—%(71/1 +15) = A(ng — n4). (24)
Here A is a nonintrinsic parameter since it was not origi-
nally present in the model. In order to discriminate be-
tween the two rival models (24) is regressed for A. As seen
from (24), Model 1 is the proper one if A were equal to
—1/2 and Model 2 is the proper one if A were equal to
1,/2. In practice A may not be exactly equal to either +1/2
or —1/2. In such cases the confidence limits of A should
be assessed to see whether it included +1/2 or —1/2, or
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both. If A were equal to —1/2 in the desired confidence
region, then Model 1 is the correct one. On the contrary, if
A were equal to +1/2 in the desired confidence region,
then Model 2 is the correct one. The acceptable deviation
depends on the desired degree of confidence. Normally 95
percent confidence limits should suffice in most en-
gineering situations.

Mezaki and Kittrell [26] successfully used this model for
discriminating between two models for the vapor-phase
dehydration of secondary butyl alcohol to the olefin on a
commercial cracking catalyst.

A somewhat analogous method consists of regressing the
equation

(25)

for A. If A were equal to 1, then Model 2 is the correct one.
One the other hand, if A were equal to 0, then Model 1 is
the correct one. As before it is recommended that the value
of A should be considered in its confidence range.

y=({0=X)n +An,

B. Use of Intrinsic Parameters

Intrinsic parameters, which are inherently present in the
model and of a simpler functional form than the entire
model, facilitate the experimenter’s ability to test the ade-
quacy of a proposed model. Kittrell and Mezaki [2], [27]
used this approach for proposing a model for the olefinic
dehydration of a pure alcohol feed to a reactor. For details
of this method see Kittrell and Mezaki’s original article
[27].

C. Use of Bayesian Methods

The Bayes’ theorem provides a useful means of dis-
criminating among rival models. Bayes’ theorem states [28]

P(A,)P(B/A,)

P(A,/B) = — : (26)
2. P(B/A,)P(4,)
i=1
where 4,, (i = 1,-- -, r) denotes the ith model, B denotes

the data, P(A4;) denotes the prior probability of the ith
model, and P(B/A;) denotes the likelihood for the ith
model.

In order to use the Bayes’ theorem for model discrimina-
tion, one needs the values of prior probabilities of various
models as seen in (26). When one does not have any strong
preference for a particular model, he may assign equal
probabilities to all the models.

The calculation of likelihood requires knowledge of the
error structure. If one assumes that the errors are normally
and independently distributed with a variance o2, the
probability density function (pdf) of n observations

Yis Y25 *» Yy is given by [14]
1

cims e o = 08B

pdf = e s
(\/2——7;0) 20 u=1

(27)
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TABLE I
NUMERICAL DATA FOR MODEL FITTING
u £, Y,
1 0 <1.290
2 1 S.a18
3 2 7.049
4 3 19.886

On the other hand, if one assumes that the eITors are
normally distributed but correlated with a variance—covari-
ance matrix ¥o?, then the pdf of n observations Vialaans,
¥, 1s given by

SRdRiEE. ST
e (V27 a)" /o]
1 [(z =NV » -8, )] (5)

20>

.exp et

Once the observations ( y) and the design matrix (¢) are
substituted into one of the above expressions for the pdf,
the resulting expression, which is a function of 8 and o2, is
called the likelihood.

Example of Model Discrimination: Reilly [4] considered a
simple numerical example of discriminating among rival
models. Assuming ¢ as a single independent variable, y, as
the dependent variable, the set of numerical data shown in
Table I were used for discriminating among rival models.

The following three models were considered by Reilly
for discrimination purposes

Model 1:  y, =6,,¢, +¢,,
Model2: y = 0, + 0,¢, + € (29)
Model 3:  y, = 6,, exp 05,6, + ¢,.

It is assumed that one of these three models represents the
experimental data adequately. The errors were assumed to
be normally and independently distributed. The proba-
bility density function, defined by (27), is applicable for
this case. Using the least-squares criterion, the parameters
were estimated and the maximum likelihoods were calcu-
lated. Assuming equal prior probabilities, the posterior
probabilities were calculated for each model as shown in
Table II. From the posterior probabilities it is seen that
Model 3 is preferred. This simple example illustrates how
the Bayesian approach may be used in model discrimina-
tion. Several investigators [7], [13], [29], [30] used Bayesian
methods in model discrimination successfully.

D. Likelihood Discrimination

Likelihood discrimination shows the flexibility of Baye-
sian methods combined with an ability to “let the data
speak for themselves” [4]. To illustrate this approach as-
sume the /th model to be represented by the functional
relationship

Niu =f;(_0’_$u)' (30)

TABLE II
POSTERIOR PROBABILITIES OF MODELS

Model Prior Probability Likelihood Posterior Probability

1 0.3333 0.05 0.0002
2 0.3333 1 0.0049
3 0.3333 202.2 0.9948

Let y denote the vector of observations. Also assume
that the observations are correlated with a variance—covari-
ance matrix Vo2, Assume that n observations are available.
Under these assumptions the probability density function
is given by (28).

The maximum of the likelihood function (maximum w.r.
to 0*) for the ith model can be shown to be given by [23]

nn/2
Qm)" MW

where M, is the weighted sum of squares (y — 72,V Yy
— ;). The ratio of maximum likelihood for two models §
and j, also known as the likelihood ratio, is a comparison
of how well the two models can be made to fit the data.

For the above situation, then, one can show that the
maximum likelihood ratio is given by

A = (Li)max/(Lj)max e (%/M)"/Z

This ratio A denotes the likelihood odds of Model i versus
Model ;.

The likelihood ratio method of discriminating among
several rival models comprises of finding the likelihood
ratio between the best model (having minimum weighted
sum of squares) and the other models taken one at a time.
Thus two-way comparisons are made by examining these
ratios. This method (using the ratio of the maximum
likelihood) is not the only way of discriminating nuisance
parameters in likelihood inference.

Rao et al. [23] and Reilly [4] have clearly demonstrated
the use of maximum likelihood ratio as a statistical crite-
rion for discriminating among rival kinetic models. Even
with a moderate number of experimental observations, the
likelihood ratio appeared to be a powerful one for dis-
criminating among a large number of competing models.
There are inherent difficulties with any discrimination
method when the models have different numbers of param-
eters. For more on this see Reilly [4] and Rao er al. [23].

L(8.0%) = exp(-n/2), (31)

(32)

V. TESTS OF MODEL ADEQUACY

Once the most plausible model has been obtained from a
set of competing models it is necessary to test for the
adequacy of the model. This is usually accomplished by
lack-of-fit F tests and also by a residual analysis. Tests of
model validation has been discussed by several investiga-
tors (e.g., [1], [3], [15], [31]-[33]) the basic principles of
which will be discussed below.
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A. Lack of fit F tests

The F statistic in model fitting may be defined by:

lack of fit mean square ,
pure error mean square -

This ratio is compared to the critical value of F at the
required degree of confidence and the corresponding de-
grees of freedom. If the above ratio is greater than F;,
then the model is inadequate. For a detailed treatment on
lack-of-fit F tests, see [1], [15].

B. Residual Analysis

A residual is defined as the difference between the
observed and the predicted values of a response (i.e., y-7).
The residual analysis can be applied either to the whole
model as it is, or in some other cases (like in diagnostic
checkup in model building) on some estimated parameters
of a tentatively entertained theoretical model, so as to
pinpoint the inadequacies.

As an illustration assume that the true model of a set of
observations is given by

vy =0, + 0,& + 6,¢, + ¢ (33)
Assume that the fit is given by
S éo * 01§1- (34)

A

It will be seen that the residual y, — y, is correlated with
the variable £, in a linear way. Thus if the residual is
correlated with respect to £,, it is indicative that the model
should include a term consisting of £,. Once this linear
term is included and a residual analysis is performed, then
the residuals should be random if the model were adequate.
Time plots of residuals, as well as plots of residuals with
respect to various controllable variables can detect possible
model inadequacies, which can throw light on how to
improve the model. This is the principle in adaptive model
building. Kittrell er al. [34] have further demonstrated the
use of diagnostic parameters for model building of chemi-
cal reaction rate models. For a more detailed treatment of
residual analysis see [2], [15].

VI. DESIGN OF EXPERIMENTS FOR MODEL
DISCRIMINATION—SINGLE RESPONSE MODELS

In the past, for kinetic modeling the “one-factor-at-a-
time” method [35], in which the experimental factors are
varied one at a time, with the remaining factors held
constant, has been used. However this method of experi-

2Tf X, X550, . vand Yi» Y22" " *» Ym are two independent random
samples of data from two different normal populations, then the F
distribution is

Z (x; ~ f)z(m - 1)o?
i=1

Y (n-7)(n-1)e}

i=|

F=

with the degrees of freedom = (m — 1, n — ).
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mentation is found to be ineffective especially when there
is interaction among the various factors under considera-
tion.

When discrimination cannot be achieved from the exist-
ing data, it becomes necessary for the experimenter to
design further experiments that provide maximum dis-
crimination. It might be expected that all one has to do is
to plan the future experiments carefully, run them, and
then it may be expected that one of the models would
emerge as the best one. But this is not the case in general.
Different researchers claim different models for the same
phenomenon. A classic example is the water—gas shift
reaction [36] for which several models have been proposed.
The reason for the discrepancy is that the “models are not
put in jeopardy.” In the past, investigators took the dif-
ference in response given by the models for choosing a
measure of discrimination.

One of the very early methods of design of experiments
for discriminating between two rival models is that of
Hunter and Reiner [6], who suggested maximizing the
design criterion

D=(.ZN+l—g}cl+l)’ (35)
where f, ., and gy, denote the predicted responses for
the two rival models for the (N + 1)th experimental trial
(to be conducted) using the best estimates of parameters
obtained after conducting N experimental trials.

When the number of rival models is greater than two,
Roth [13] suggested a criterion that involved choosing the
experimental points that maximized the product of abso-
lute differences in the predicted values of the response.
Roth’s criterion is given by

ﬁ (> — 4. (36)

Gi=

B

=

The subscript j corresponds to the values of the indepen-
dent variables §;. The design criterion to be maximized is
the weighted average of the spread among responses for the
proposed models, weighted according to their probabilities,
ie.,’ :
D = £,P"C,. (37)

Both Hunter and Reiner’s method and Roth’s method
ignore the uncertainties associated with each model. To
alleviate this difficulty, Box and Hill [7] proposed an
excellent method for discriminating between m (m > 2)
rival models. Their method takes account of not only the
difference in response given by the models to be dis-

criminated among, but also the variance of the estimated
response. The design criterion to be maximized is given by

3The probability P{") of any model i denotes our degree of belief in
that particular model after conducting n experiments.
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Box and Hill as

_l n m (alz‘— ajz)
o 2 ,'§| jglﬂ’mwj" (02 4 0,-2)(02 5 012)

L R R 1 + 1

+()’n+| n+|) (°2+U,'2) (02+sz) } (38)
Here o? is the common variance of the n observations
Yis Y1 " "y Y 0 and o are the variance for the predicted
values of y, ., under the models i and j, respectively, and
Y2y and i, are the predicted values of y,,, under
models / and j, respectively. Under certain assumptions,
the pdf was assumed to be given by

1

1
= il e
. b 2(02+a,2)

2'77(02 + oiz)

e =327 39)

The above criterion is obtained by maximizing an upper
bound on the expected change in the entropy.

Hill and Hunter [37] extended the criterion to the case
where o2 is not known. In the procedure suggested by Box
and Hill, the design and analysis are carried out simulta-
neously, and the stopping rule for experimentation is to
stop when the posterior probabilities indicate that one
model is clearly superior to the rest. Several studies {9],
[14], [38] revealed that the model probabilities may oscillate
considerably, and Hill [39] suggests that the Box and Hill’s
criterion must be applied very cautiously and the model
should not be accepted too readily based on a small
number of discriminating experiments.

Fedorov and his coworkers [40], [41] advocated a crite-
rion for the design of experiments for model discrimina-
tion, which is essentially 2 formalization of the intuitive
idea of Hunter and Reiner. Atkinson and Cox [42] pro-
posed another criterion for discriminating between rival
models which is similar to the one proposed by Fedorov
and coworkers.

Hsiang and Reilly [10] adopted a Bayesian procedure for
model discrimination which eliminated some of the strin-
gent requirements for Box and Hill’s procedure. However
their method seems to require excessive computer storage
space for problems involving many parameters. The exist-
ing methods of experimental designs for discriminating
between rival regression models have been reviewed re-
cently by Hill [39].

VII. DESIGN OF EXPERIMENTS FOR ESTIMATION OF
PARAMETERS— SINGLE RESPONSE MODELS

Suppose that after suitable model-building experiments
have been carried out, a given model has been singled out
as being adequate. Also assume that the space of the
experimental variables is limited to some particular region
of experimentation. Suppose it is desired to obtain esti-
mates of the parameters 6, evaluated at the wth set of
experimental conditions and taken at some set of parame-

ter values §,, i.e.,
f;’u o af(_g‘ §u)/80,|f-_oo (40)

The matrix of these derivatives, which will contain N rows
(observations) and p columns (parameters), may be written
T L) (41)

Box and Lucas [11] have indicated that, under certain
plausible assumptions, a choice of experimental points
which will maximize |F'F| will also be that choice of data
points which will minimize the volume of the joint confi-
dence region of parameters. \/|F'F| is inversely propor-
tional to the volume of the joint confidence region.

Kittrell er al. [43] applied the above method for obtain-
ing the precise estimates of parameters in the model for the
reduction of nitric oxide, data for which were obtained by
Ayen and Peters [44], and found that for the same number
of data points the parameters in the model can be esti-
mated 18 times more precisely than by another commonly
used one-factor-at-a-time design.

Certain aspects of sequential design procedures for pre-
cise parameter estimation were discussed by Hosten and
Emig [4], [45]. Box and Wilson [46] discussed certain
aspects of design of-experiments. The dual problem of
model discrimination and parameter estimation has been
discussed by Borth [47].

VIII. PARAMETERS ESTIMATION—MULTIRESPONSE
MODELS

In some cases, for a given set of experimental conditions,
not cne but a number of responses can be measured in a
process. There are numerous examples of such systems
where several responses are obtained. The use of multire-
sponse techniques increases the precision and accuracy of
the parameter estimates and decreases the volume of the
joint confidence ellipsoid. Singh and Rao [48] reviewed
parameter estimation and model discrimination in multi-
response models in a recent review.

A. Mathematical Formulation

A multiresponse model can be denoted by
¥=1(0,%) +e (42)

where 7 represents the true value of the response Y, €
corresponds to the error associated with the measurement,
0 is a (p X 1) vector of parameters, and §,isan (s X 1)
vector of controllable variables.

More explicitly the ith response (1 < i < r) for the uth
experiment (1 < < n) may be denoted by

K= g%, £) + 0. (43)
It is assumed that the errors are such that
E(cfj)) =0 for all i, u;

B(&e) =0,

E(el%) = o

foralli, j, u = v;
fori. j. u. ; (44)

j’
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The vector y, = (y{V, y@,- -, y7Y of r response for the
uth experiment has a symmetric covariance matrix 2 given

by

2 = {0}, P 2o rifm bR vee r. {45)

Just as before, the problem before us is to discriminate
among rival models of the type given by (42), and secondly
to estimate the parameters once the most adequate model

has been obtained.

B. Parameter Estimation

In a situation of r responses and p parameters which are
common to all the r response equations, Box and Draper
[49] showed that the point minimization of

r r
L VB oijvij

i=1 j=1

(46)

gives the generalization of the method of least squares.
Here 0% is the (i, j)th element of !
2 .
bos Z ()’,f')
u=1

-

and = 1) - ). (47)

When o, is unknown, they suggest the minimization of

r r

o Z Z vijVij/r

i=1j=1

(48)

n

b 80

u=1

— 7P)°

for the estimation of parameters, where V. is the cofactor
of v;; in v,,. However, they warn that the overall criterion
is likely to be offset by the lack of fit in a particular
response. In such situations it is safe to check for the
adequacy of fit by a residual analysis, and also to consider
the consistency of information from various responses by
comparing the posterior distributions.

Beauchamp and Cornell [50] suggested an iterative pro-
cedure for the estimation of parameters in a multiresponse
system. They suggest the minimization of

$(8) = [Y -n(8,£)]'27'[¥ =n(8, £)]
Here Q is defined by

(49)

Q=E(e)=20 1, (50)

where ® is the Kronecker product.
As a starting point the r response equations are ex-
panded about a trial vector of parameters §° to give

n(8,£) =n(8° ¢) + x8°, (51)
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where
Xnlall). wml 2o, mlm, 240, p, (52)
for
X - 3’7(i)(_0'§u)/80i» (53)
X =y 255700, ) (54)
and
8°=6-0° (55)

Modified Gauss—Newton method discussed by Hartley [51]
can be used to estimate the least-squares estimates of 6.

Hunter [52] proposed the following criteria for various
situations.

1) If 6"/ are known, the quantity Z}_,X7_,0",; should
be minimized.

2) If g, =0fori=j,L_06"Li_(y{” = 1{?)?) should
be minimized.

3) For cases where the variances are assumed equal or
when certain responses can be measured more pre-
cisely than others, then £7_,Z7_,(y{” — 7{?)? should
be minimized. .

In all the above situations it is assumed that ¢’/ are
known. For the case when ¢*/ are not known minimization
of Box and Draper’s determinant criterion [49] gives the
best estimates of @ in a multiresponse model. Their de-
terminant criterion is given by

n

£

u=1

- 0

- . (56)

— ()

2N .qE‘r)

n

b

=1

Mezaki and Butt [53] applied the above criterion to a
complex reaction sequence and found the criterion to
provide an effective means of estimation of parameters.
With regards to convergence to final estimates, they ob-
served that the determinant criterion to be much more
rapid than the generalized nonlinear least-squares tech-
niques. They found very little difference in these two
procedures so far as computational effort is concerned.
From a precision point of view, the determinant criterion
puts the greatest weight on those responses which are
measured most accurately, while the least-squares criterion
places the greatest weight on the data known less precisely.

Erjavec [54] points out that the error variance of each of
the responses must remain constant from run to run. Box
et al. [55] discussed the possibility of one or the other kind
of linear relationships which might exist among the re-
sponses. They suggest that if m-linear relationships are
known to exist, then m-dependent responses must be de-
leted before analyzing the data.

Box et al. [56] proposed a method which minimizes v,;
with respect to § and Y, for handling missing data Y, .
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Reilly and Patinp-Leal [57] presented results of a study of
the functional case of the problem of parameter estimation
when there is error in all the variables. Their study leads to
new and efficient algorithms for finding point estimates
and their precisions.

IX. MODEL DISCRIMINATION— MULTIRESPONSE
MODELS

Similar to single-response models, the task before an
experimenter is to discriminate among various competing
multiresponse models. Either the likelihood discrimination
techniques described earlier for the single-response models
or the Bayesian methods which make use of posterior
probabilities can be used for modal discrimination.

The likelihood L, , for the kth multiresponse model is
given by [5], [30]

(9. y) - 2k
LIOE, ) w 0k,
et (271')’/2
1 ¢
-CXP[—E(z,.—y",k)’E '(gn—gn_k)]- (57)
where

2n.k i Z it Xn,kMk—IXrll,k'

t=1

(58)

Here X, , is an (r X p) matrix of partial derivatives whose
(i, I)th element is the partial derivative of the ith response
with respect to §,. M, itself is given by

r

.
M, =3 Y oX{"XD.
i=1j=1

(59)

Likelihood discrimination is carried out by comparing
maximum likelihoods for different models, taken one at a

time.
In Bayesian methods discrimination is assumed to be

achieved if one of the models attains a high posterior
probability. At the end of n-experiments, if it is not possi-
ble to discriminate among the various competing models,
further experimentation is necessary which is conducted by
a sequential design of experiments as described below.

Bayesian methods, in general, use maximum likelihood
for computing the posterior model probabilities. However
the likelihood, being a function of the parameters which
are themselves random variables, is in itself a random
variable. Prasad and Rao [30] used expected likelihood in
place of point or maximum likelihood in computing the
posterior probabilities and demonstrated the utility of ex-
pected likelihood in efficient model discrimination.

X. DESIGN oF EXPERIMENTS FOR MODEL
DISCRIMINATION— MULTIRESPONSE MODELS

Hill and Hunter [58] extended the Box and Hill’s crite-
rion for application to multiresponse models. Their dis-
crimination criterion, to be maximized for obtaining the
experimental conditions for the (n + 1)th experimental

run, is given by

1 m m
=§_ Z Z Pn,h
h

=] k=h+1

Pn,k{" [En+l.h2;+l|.k

+En+|.kz—+ll,}. 5t 21/']

-

+(Y;:+l,h = f’n+|.k)’(2;4ll,h

i,n+l,k)>‘

where 7, is an (r X r) identity matrix, f’H,_k isan (r X 1)
vector of response for the n + 1th experimental conditions
predicted using the kth model and the previous best esti-
mates of parameters, and P, , is the posterior probability
of model k after the observations ¥, are obtained.

The design of experiments and analysis are conducted
sequentially until discrimination is achieved. Less emphasis
is placed on poorly fitting models. When the prior proba-
bilities are in error, it is observed that the correct model
emerged as the best one at the expense of more experimen-
tation.

An important point to be noted about the Box—Hill
procedure is related to the stopping rule. Box—Hill’s crite-
rion suggests that discrimination is achieved when the
posterior probability of one of the models is rather high
compared to those of other models. However, several inves-
tigators [9], [14], [38], [59] experience that model probabili-
ties in certain situations may oscillate considerably from
stage to stage. The rule must be applied cautiously and a
model should not be accepted readily on the basis of a
small number of discriminating experiments. Despite the
limitations of Box-Hill’s procedure, it has been success-
fully applied in various situations.

Another useful criterion for the design of experiments
for model discrimination has been proposed by Roth [13].
For a multiresponse system, Roth’s criterion is given by

+Zn—+ll,k)(17n+|,h - (60)

r m

53 H Z Pn,k].:I (Yn(i)l.h .

i=1 = h=1
k=1 sy

20 1. (61

where P, ¥/, , are defined earlier.

Roth’s criterion consists of maximizing the divergence
between the values of responses predicted by different
models. If the parameters are not known to the same
degree of accuracy in all the models a misleading set of
experimental conditions may be predicted.

Reilly and Blau [60] observed that in the use of Roth’s
criterion the large divergences due to inaccurately known
parameters outweigh the smaller divergences due to accu-
rately known parameters, resulting in a probably wrong
sequential design.

XI. DESIGN OF EXPERIMENTS FOR PARAMETER
ESTIMATION— MULTIRESPONSE MODELS

Once the precise model applicable to a particular physi-
cochemical situation has been determined, the goal of the
experimenter is to estimate the parameters of the model
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precisely, which needs additional experimentation. Draper
and Hunter [61] proposed a method of conducting n*
additional experiments. Their approach consists of maxi-
mizing the posterior density of 8, after conducting (n + n*)
runs, with respect to § and n*—which is equivalent to
maximizing the determinant
9 r
D=Y Y oKX, (62)
i=1j=1

where X; is an (n + n*) X p matrix of elements defined by
(52), the derivatives being evaluated at the current best
estimates of §. :

Box [62], [63] discussed the problem of nonlinear model
building in situations when constancy of covariance matrix
cannot be assumed. He has also developed a computer
program which undertakes the risk of formal computauons
of optimal experimental designs.

In the program he proposed the use of numerical differ-
entiation for obtaining the derivatives of the model re-
sponses with respect to the unknown parameters. The
program can be extended to handle errors in the input
variables. Box [64] has described an experimental design
criterion for precise estimation of a subset of the parame-
ters in a nonlinear model.

This involves formulating an experimental demgn crite-
rion for estimating only ¢ parameters of interest out of a
total p parameters. For a locally uniform prior distribution
for @, his criterion consists of maximizing the determinant

£ m=dy - A,2A2‘2'A’,2, (63)

where 4, is a (¢ X ¢) matrix, and 4,,, A, are obtained by
partitioning 4, and is structured

r r

n
Z 2 X oYX, X;,

u=1i=1 j=1

(64)

for

s e In(4, &)
= 26, 38

P

}, (65)

all derivatives being evaluated at Q Thus Box’s [64] crite-
rion for the design of experiments should be to maximize
the determinant D described in (63). The derivatives are all
evaluated of the current best estimate of 8.

XII. A CASE STUDY OF SEQUENTIAL MODEL
DISCRIMINATION IN MULTIRESPONSE SYSTEMS

Prasad and Rao [30] advocated the use of expected
likelihood in efficient model discrimination. From the basic
definition, expected likelihood is given by

=f_ f_ Ln+|,u(.62’ Yn+1)
Pn.u(g)dol)d029”

E(Ln+l u(az’ n+l

-5.do

D

(66)

See Prasad and Rao’s article for details on evaluating the
integral in (66).
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Either the point likelihood ((57)) or the expected likeli-
hood ((66)) can be used to update model probabilities
using Bayes’ theorem. Prasad and Rao presented computa-
tional results using multiresponse data to demonstrate the
utility of the expected likelihood in efficient model dis-
crimination in a catalyst fouling system. Two discrimina-
tory criteria, viz., the Box—Hill criterion ((60)) and Roth’s
criterion ((61)), are compared.

The extensive multiresponse experimental data on the
product distribution for various space velocities and decay
times for the vapor phase reaction between tetrachloro-
ethane and a large excess of chlorine on activated silica gel,
collected by Prasad and Doraiswamy [65], are used in the
present case study on model discrimination. The reaction
proceeded according to the following scheme.

€1y Cly
C,H,Cl, = C,HCl, - C,Cl,.
(4,) (4,) (4;)

Their experiments revealed a decline in the catalyst activity
with time. Typical data used for illustrative purposes are
given in Table III. The prior information consisted of a
subset of six experimental data points, while the remaining
64 data points were used for sequential design purposes.

Under certain assumptions a general reaction rate model
for the system under consideration may be represented by
two simultaneous equations of the type

1= f1(¢.9)f(a), (67)
da/dt = f,(§,0)fs(a), (68)

where 7 is the rate of reaction, f|, f,, f;, and f, are functions
depending on the system, 7 is the decay time, and a is the
activity of the catalyst (a = 1,_,/7,-¢)-

For the chlorination reaction, 11 different combinations
of fouling reactions were considered by Prasad and Rao,
resulting in 11 different plausible models.

[, consists of two functions corresponding to the two
independent responses—1),, the rate of disappearance of
A,, and 7,, the rate of formation of 4,, i.e.,

= —@ El (69)

and

m, = (0,4, — 6,§;)a.
A further assumption is given by

fy(a) = fi(a) = a. (71)
The difference combinations of fouling reactions consid-
ered by the authors and the corresponding model equations
are given in Table IV. The Box complex method [59], [66]
was used for estimating the parameters in various models.

The prior information consisted of six random experi-

ments (experiments numbered 8, 13, 18, 23, 41, and 46).
Since no one model was preferred to start with, prior
probability of each model was assumed to be 1/11. The
following initial estimates were used for parameter estima-
tion:

6, =001 hr ',

(70)

6,=0.001hr~', 6,=0.03hr"",
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TABLE III
TYPICAL EXPERIMENTAL RATE DATA
Mole % Mole % Decay : 51 ¥
Expt. Space time of A of A time (hr)

S. No. No. (g hr/ mol) (100151) (

100252) (§3) (mol/g hr x 102)

1 13 90 44.3 52.0 1 -0.460 0.242
2 58 30 82.1 17.4 8 =0.515 0.609
3 36 15 89.0 10.9 5 =0.715 0.668
4 46 60 63.2 35.2 6 -0.518 0.450
70 64 15 90.3 9.5 9 -0.585 0.524
TABLE IV
RivaL MODELS
Model Fouling Model
Number Reactions Equations
1 A, =P ’7' = —0,§ exp(—0,§,£5)
8 '72 = (05 ~ 92£z)€Xp(—93€|£3)
2 A, > P 7' = —0,%, exp(—05¢,¢5)
7’ = (6,§, — 0,§,)exp(—65¢,¢5) .
3 Ag w0 F 7 = —0,§,exp(—05(1 — &, — £,)¢5)
7’ = (6,§; — 0;€;)exp(—0;(1 - ¢, - §2)€3)
4 Ay +4; > P ' = —8,§ exp(—0,§,£,4,)
“ 7’ = (6,8, — 0:8,) exp(—05¢,£,¢,)
3 Ay + 4 = P "Il = —0,§ exp[—0;¢,(1 - &, = §5)é]
n? = (8, — 0,6;) exp[~603£,(1 — &, — §,)5]
6 Ay +A; > P 7' = -0, exp[—6,¢,(1 - ¢, - §,5)§5]
7 = (0,8, - 0,4)) exp[—056,(1 — & — £,)4]
7 Ayt Ay + Ay = P ) = —0,§ exp[—0:£,8,(1 — §, — £)4;]
712 = (06— 0z£z)exp[—03£|§2(1 =& —§:)63]
8 Ay P 7' = —0,§ exp[—0,(§, + £,)¢5]
A, > P 7’ = (0,¢, —0,§,)exp[—05(4, + £,)¢;5]
9 Ay P 7' = —0,§,exp[—06,(1 - £,)&;]
Az R 7’ = (0,§, — 0,8;)exp[—05(1 — £;)&;]
10 s Ry 2 71:= —0,& exp[—6;(1 — £))¢;]
Ay =k n = (0,5, — &) exp[—05(1 — £))¢;5]
11 A4, —= P 7! = 8,5 exp(—05¢5)
Ay P n° = (0,§, - 0,§;) exp(—65¢;)
A3 = P

The sequential discrimination procedure consisted of the
following steps.

1) From the prior information, the parameters of each
model were estimated.

2) Using the current best parameter values and either
the Box-Hill criterion ((60)) or Roth’s criterion
((61)), the next best discriminating experiment was
designed.

3) Using the additional data of step 2) after conducting
the experiment, the parameter of all the models were
updated.

4) The probabilities of all the models were updated
using either the point likelihood or the expected
likelihood in the Bayes’ theorem.

If the posterior probability of any one model is exceedingly
high, discrimination is achieved. Otherwise the above se-
quence of steps were repeated.

Typical values of the posterior probabilities of the best
model obtained by the above procedure are given in
Table V.

The following salient features were observed by this case
study:

1) An entirely different set of discriminating experi-
ments was designed with the same prior information
depending on the discriminatory criterion used.

2) The Box-Hill criterion proved to be more efficient
in comparison to Roth’s criterion.

3) Convergence towards the best model was faster with
the expected likelihood than with the point likeli-
hood. =

Caution should be exercised with either the point-likeli-
hood method or the expected-likelihood method. Some-
times the model probabilities oscillate from run to run.
When the models have different number of parameters
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TABLE V
POSTERIOR PROBABILITIES OF BEST MODEL USING Box-HiLL
CRITERION AND EITHER POINT LIKELIHOOD OR EXPECTED

LIKELIHOOD
Discrimination Total number of Posterlor probability of Model 9
stage exper iments using
point likeli- expected likeli-
hood hood
Trnol,g Trmq,g
1 7 0.502 0,506
2 8 : 0.513 0.635
5 9 0.623 0.735
4 10 0.656 0.814
S 11 0.730 0.842

there are inherent difficulties with any discrimination
method. Using the likelihood method, good discrimination
requires that the likelihood ratio be higher than usual if the
favored model is the one with the larger number of param-
eters [4].

A. Some General Comments on Dynamical System and -
Optimal Design

The process of modeling the dynamical properties of a
system is an important step in the analysis and design of a
control system [31]. Very often modeling results in a para-
metric model of the system which contains many unknown
parameters. The problem of estimating parameters in mod-
els of dynamical system has been discussed in detail by
Astrdm [31] in his classic paper on “maximum likelihood
and prediction error methods.” Furthermore Astrém has
shown that the maximum likelihood method and pre-
diction error methods can be successfully applied for
estimating parameters of a dynamical system. Estimation
problems lead to maximization of the likelihood function
or minimization of a function of the prediction error. A
number of different ways of solving the optimization prob-
lem are also discussed by Astrom [31]. It is further shown
that the process of computations can be reduced signifi-
cantly by organizing the measurements in a special way
(equidistant sampling) or by choosing special model struc-
tures. For more see [31], [33]. The random process theory
and state-space characterization of linear dynamic systems
are essential to understanding optimal estimation theory.
Gelb er al. [68] defines the concept of optimal estimation as
follows.

An optimal estimator is a computational algorithm that
processes measurements to deduce a minimum error esti-
mate of the state of a system by utilizing: knowledge of
system and measurement dynamics, assumed statistics of
system noises and measurement errors, and initial condi-
tion information.

The three types of estimation problems (estimate desired at
time ¢), filtering, smoothing, and prediction, are discussed
in detail by Gelb [68]. For a broader treatment on this see
[68], [33]. The only theory of optimal design, at present,
deals with linear models and parameter estimation. Fur-
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thermore the nonlinear models imply sequential methods
and severe numerical difficulty. The problems of estimat-
ing parameters in models of dynamical systems is outside
the scope of this paper. See [31], [33], [67]-[74], [76], [78].

XIII. CONCLUDING REMARKS

Parameter estimation, model discrimination, and design
of experiments constitute the important components of
modeling. Various computer-based techniques have been
developed in the recent past for parameter estimation.
Linear models are easy to handle while nonlinear models
require initial estimates of parameters in the estimation
problem. If the models are nonlinear but are intrinsically
linear, then they can be linearized to obtain the initial
estimates after which one of the several nonlinear estima-
tion techniques can be applied for estimating the parame-
ters. In recent years, derivative-free methods have been
developed which can possibly save computation time.

In model discrimination, both the Bayesian and the
non-Bayesian methods find extensive application. Also the
sequential design techniques find extensive use both for
model discrimination as well as for the parameter esti-
mation. Experimental designs for simultaneous model
discrimination and parameter estimation need to be devel-
oped in the future. Parameter estimation techniques are
well-developed for multiresponse situations. While the vari-
ous modeling techniques have been applied successfully so
far on single response systems, their application to multire-
sponse systems needs to be investigated on experimental
data.
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NOMENCLATURE
a Activity.
A Reaction species.
A ith model; also used for the determinant

defined by (64).

Ay, A,y Ay Reacting species.

B Data; also used for reaction species as in
(5.

(3 Concentration as in (2); also used for spread
among responses surfaces as in (36), and for
reaction species as in (5).

D Design criterion.

D, Determinant criterion as given in (56).

E Expected likelihood as defined by (66).

e Functional relationship.

i Matrix of partial derivatives as defined by

(41); also used for F in F-distribution.

!
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g Functional relationship.

i (r X r) identity matrix.

k Rate constant.

Keq Equilibrium constant.

K Adsorption equilibrium constant.

L Likelihood.

m Order of reaction.

M, As defined by (59).

M, Weighted sum of squares as in (31).

n Number of experimental observations; also
used for the order of reaction as in (2).

p Number of parameters; also used for par-
tial pressure as in (16).

P Probability.

P(A,) Prior probability of the ith model.

P(B/A,) Likelihood for the ith model.

r Rate of reaction.

s Vacant site on a catalyst surface.

o Estimate of variance.

t Time coordinate; also used for ¢ in z-distri-
bution.

v Covariance. .

vV Variance-covariance matrix.

V. Cofactor of v;; in v, -

X Partial derivative matrix as defined by (52).

y Observed value of response.

z Residual as defined by (19); also used for
the quantity defined by (46).

z Quantity defined by (48).

Greek Symbols

Q E(ee).

a Significance level.

) Quantity defined by (21).

€ Experimental error.

n True or predicted value of response.

2 Covariance matrix as defined by (45).

[ Vector of parameters.

¢ Vector of parameters.

£ Vector of input variables.

o2 Variance.

o Element of variance-covariance matrix af
subscripts are used) or element of
variance—covariance matrix (if superscripts
are used).

¢ Functional relationship.

T 3.1426; also used for probability.

A Nonintrinsic parameter; also used for likeli-
hood ratio as in (32).

v Degrees of freedom.

® Kronecker product.

Subscripts

Ji 2 Parameters or models.

a, b Species A, B, C, E, and W.

c,e,w
Initial value.

Response or model.

N
y

Experimental trials.
Number of responses.

Superscripts

(1

(6]
(71
(8]

[

[13]
(14]
[15]
(16]
[17]

(18]

[19]
[20]

(21]

(22]

(23]

(24]

Models; also to measurements as in (4).
Reaction orders.

Experimental trials.

Initial value.

Best estimate.

Transpose.
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